Solving integral equations via admissible contraction mappings

نویسندگان

چکیده

In this article, we introduce a new concept of admissible contraction and prove fixed point theorems which generalize Banach principle in different way more than the known results from literature. The article includes an example shows validity our results, additionally obtain solution integral equation by mapping setting b-metric spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $F$-Weak Contraction of Generalized Multivalued Integral Type Mappings with $alpha $-admissible

The purpose of this work is to investigate the existence of fixed points of some mappings in fixed point theory by combining some important concepts which are F-weak contractions, multivalued mappings, integral transformations and α-admissible mappings. In fixed point theory, it is important to find fixed points of some classess under F- or F-weak contractions. Also multivalued mappings is the ...

متن کامل

SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES

In this paper, we introduce the notions of fuzzy $alpha$-Geraghty contraction type mapping and fuzzy $beta$-$varphi$-contractive mapping and establish some interesting results on the existence and uniqueness of fixed points for these two types of mappings in the setting of fuzzy metric spaces and non-Archimedean fuzzy metric spaces. The main results of our work generalize and extend some known ...

متن کامل

New Generalization of Darbo's Fixed Point Theorem via $alpha$-admissible Simulation Functions with Application

In this paper, at first, we introduce $alpha_{mu}$-admissible, $Z_mu$-contraction and  $N_{mu}$-contraction via simulation functions. We prove some new fixed point theorems for defined class of contractions   via $alpha$-admissible simulation mappings, as well. Our results  can be viewed as extension of the corresponding results in this area.  Moreover, some examples and an application to funct...

متن کامل

Solving Abel Integral Equations of First Kind via Fractional Calculus

We give a new method for numerically solving Abel integral equations of first kind. An estimation for the error is obtained. The method is based on approximations of fractional integrals and Caputo derivatives. Using trapezoidal rule and Computer Algebra System Maple, the exact and approximation values of three Abel integral equations are found, illustrating the effectiveness of the proposed ap...

متن کامل

Fixed Points and Cyclic Contraction Mappings under Implicit Relations and Applications to Integral Equations

Inspired by the fact that the discontinuous mappings cannot be (Banach type) contractions and cyclic contractions need not be continuous, and taking into account that there are applications to integral and differential equations based on cyclic contractions, a new type of cyclic contraction mappings satisfying an implicit relation that involves a control function for a map in a metric space is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2214947n